Pulp & Paper Electrical Safety
Ties to LOTO and NFPA 70E
Contact Info:

Brian Downie
Group Manager
Faith Technologies, Inc.
PO Box 627
Appleton, WI 54944
800-274-2345 ext. 6513
www.faithERM.com
Today’s Goals: (Electrical Safety Training)

- Risk and Liability Issues in Today’s Industry?
- How to Recognize and Avoid Hazards
- Review Key Codes and OSHA ties to NFPA 70E
- Review of Common Safety Goals and NFPA 70E
- Trends in Today’s Market
- Group Discussion
General Experience on NFPA 70E (What Roles do You Manage Well?):

- What is NFPA 70E?
- What role do I have with safety in our company?
- How can I be safer myself?
- How do I help others take this topic seriously within my company?
- Poll of those in class who have direct responsibility for the safety of others?
What is Arc Flash?
February 2nd 2010 Incident

An arc flash event can be described as the release of heat energy, blast energy and projectiles that can injure employees when electrical equipment experiences a fault or failure.
What Incident Increased Awareness in 2003?
Rack-In Incident
Overview of 2012 NFPA 70E

- Our current 70E code has fewer structural PPE changes than the 2004/2009 revisions.

- The current 70E code does however have more direct language and some key additions making this code more direct in nature than all previous codes.

- Upon reading article 130 it becomes evident that without performing a formal risk assessment, you would be open to liability from a third party standpoint. Simply put, the table approach to PPE does not apply in real life applications.
Nature of Electrical Accidents

- Electrical accidents, when initially studied, often appear to be caused by circumstances that are varied and peculiar to the particular incidents.
- Further consideration usually reveals the underlying cause to be a combination of three possible factors:
 - work involving unsafe equipment & installations
 - workplaces made unsafe by the environment
 - unsafe work performance (unsafe acts).
 - The first two factors are sometimes considered together and simply referred to as unsafe conditions.
Top 10 Most Frequently Cited OSHA Standards:

1. Scaffolding, general requirements, construction (29 CFR 1926.451)
2. Fall protection, construction (29 CFR 1926.501)
4. Control of hazardous energy (lockout/tag out), general industry (29 CFR 1910.147) In the Midwest this is #1
7. Electrical, wiring methods, components and equipment, general industry (29 CFR 1910.305)
8. Ladders, construction (29 CFR 1926.1053)
10. Electrical systems design, general requirements, general industry (29 CFR 1910.303)
Monson man dies after factory accident in Douglas

Posted: Apr 06, 2012 8:01 AM CDT Updated: Apr 13, 2012 8:01 AM CDT

By Andrea Lubin - email

MONSON, MA (WSHM) - A 53-year-old Monson man was electrocuted at an envelope plant in Douglas, MA. The incident occurred Wednesday afternoon at the XXXX company. The Worcester district attorney's office tells CBS 3 XXXX was working on a piece of machinery when he was electrocuted. He was taken to a hospital where he was pronounced dead. Authorities tell CBS 3 that XXXX was working on a blower motor of a machine used to make envelopes when the incident occurred.

Copyright WSHM 2012 (Meredith Corporation) All rights reserved
Why Electrical Safety
Recordable vs. Fatality Rates

Safety Overall
1 Fatality
30 Lost-Time Injuries
300 Recordable Injuries
30,000 Near Misses
300,000 At-Risk Behaviors

1 to 300

1 to 10

Electrical Safety
1 Fatality
10 Recordable Injuries
Activities that Cause The Most Failures or Incidents Are:

- Troubleshooting on energized equipment
- Operating Equipment (Physical movement of the device during the switching procedures)
So When Operating This Handle, How Many Times Will it Take Before A Failure Occurs?
Can we Base Training Methods on “Common Sense”?
Recent Near Miss:

- On Wednesday March 9th at 1:30 pm, Shift maintenance crew was notified that there was a fire in the bag house. Once Shift Maintenance arrived they determined the fire was in the auxiliary motor control panel (MCC). It was also witnessed that there was water dripping from the race way onto the motor control center. While keeping safe distance they determined it was best to power down the motor control center. *Before they were able to complete this process they heard a popping noise from the cabinet. Employees immediately started to duck and headed for the exit door. During this process the breaker in the cabinet arced out.* Maintenance replaced the arced out breaker and cleaned up the area. After reviewing what happened it was determined that the Maintenance crew followed NFPA 70E procedures thereby preventing this from being a bigger issue.
How did the Equipment Look?

Note this MCC did have PPE Labeling in place.
Changes to the 2011 NEC® You Must Know

- New and Revised Labeling/Marking Requirements
- Available Fault Current Labeling
- Equipment Identification Required
Article 110 – Requirements for Electrical Installations

110.24 Available Fault Current

- **(A) Field Marking.**

 Service equipment in other than dwelling units shall be legibly marked in the field with the maximum available fault current. The field marking(s) shall include the date the fault current calculation was performed and be of sufficient durability to withstand the environment involved.
(B) Source of Supply:

➢ All switchboards and panelboards supplied by a feeder in other than one- or two-family dwellings shall be marked to indicate the device or equipment where the power supply originates.
2012 NFPA 70E Code

Review:
Article 90.2 Scope:

Scope: (This article will be used if you ask OSHA what your responsibilities are as the employer)

- (A) Covered. This standard addresses electrical safety-related work practices for employee workplaces that are necessary for the practical safeguarding of employees relative to the hazards associated with electrical energy during activities such as the installation, inspection, operation, maintenance, and demolition of electric conductors, equipment, signaling and communications conductors and equipment, and raceways.
Article 100 Definitions

Enclosure:
The case or housing of apparatus, or the fence or walls surrounding an installation to prevent personnel from accidentally contacting energized parts or to protect the equipment from physical damage.

Note: When you consider electrical exposure you must consider the entire enclosure.
Article 100 Definitions:

Incident Energy Analysis:

- A component of an arc flash analysis used to predict the incident energy of an arc flash for a specified set of conditions.

- “Component” is the key word. Engineering is just one part of a good risk assessment process.
Article 100 Definitions:

Working On (Energized electrical conductors or circuit parts):

- Intentionally coming in contact with energized electrical conductors or circuit parts with the hands, feet, or other body parts, with tools, probes, or with test equipment, regardless of the personal protective equipment a person is wearing.
Article 100 Definitions:

Working On (Energized electrical conductors or circuit parts):

- There are two categories of “Working On”
- **Diagnostic (testing)** is taking readings or measurements of electrical equipment with approved test equipment that does not require making any physical change to the equipment
- **Repair** is any physical alteration of electrical equipment (such as making or tightening connections, removing or replacing components, etc.)
130.2(B)
Energized Electrical Work Permit
(When Required)

(1) **When Required.**

When working within the limited approach boundary or the arc flash boundary of exposed energized electrical conductors or circuit parts that are not placed in an electrically safe work condition (that is, for the reasons of increased or additional hazards or infeasibility per 130.2A), work to be performed shall be considered energized work and shall be performed by written permit only.
130.2(B) Energized Electrical Work Permit (When Required)

(Added)

(5) Results of the arc flash hazard analysis

a. Available incident energy or hazard/risk category
b. Necessary personal protective equipment to safely perform the assigned task
c. Arc flash boundary
130.1(A)(3) Energized Electrical Work Permit
(Exemptions to Work Permit)

Unchanged since 2009 Code:

• Work performed within the Limited Approach Boundary of energized electrical conductors or circuit parts by qualified persons related to tasks such as testing, troubleshooting, voltage measuring, etc. shall be permitted to be performed without an energized electrical work permit, provided appropriate safe work practices and personal protective equipment in accordance with Chapter 1 are provided and used. If the purpose of crossing the Limited Approach Boundary is only for visual inspection and the Restricted Approach Boundary will not be crossed, then an energized electrical permit shall not be required.
105.3 Responsibility.

The employer shall provide the safety-related work practices and shall train the employee, who shall implement them.

Performing a “study” is just one small aspect to this overall topic. Good field applications of the code along with sound policy and training is required to cover all aspects of 70E well!
Article 110.2 Training Requirements

110.2 (C) Emergency Procedures.

(C) Emergency Procedures. Employees exposed to shock hazards and those employees responsible for taking action in case of emergency shall be trained in methods of release of victims from contact with exposed energized electrical conductors or circuit parts. Employees shall be regularly instructed in methods of first aid and emergency procedures, such as approved methods of resuscitation, if their duties warrant such training. Training of employees in approved methods of resuscitation and automatic external defibrillator (AED) use, shall be certified by the employer annually.
Article 110.2 Training Requirements

110.2 D (1)(f) Qualified Person:

(1) Qualified Person: (c) An employee who is undergoing on-the-job training for the purpose of obtaining the skills and knowledge necessary to be considered a qualified person and who in the course of such training, has demonstrated an ability to perform specific duties safely at his or her level or training and who is under the direct supervision of a qualified person shall be considered to be a qualified person for the performance of those specific duties.
110.2 D (1)(f) Qualified Person:

(1) Qualified Person: (All New)

(f) The employer shall determine, through regular supervision and through inspections conducted on at least an annual basis that each employee is complying with the safety-related work practices required by this standard.
Article 110.2 Training

110.2 D (2) Unqualified Person:

(2) Unqualified Persons:
Unqualified persons shall be trained in, and be familiar with, any electrical safety-related practices necessary for their safety.
110.6 Training Requirements.

(E) Training Documentation
The employer shall document that each employee has received the training required by paragraph 110.6(D). This documentation shall be made when the employee demonstrates proficiency in the work practices involved and shall be maintained for the duration of the employee’s employment. The documentation shall contain each employee’s name and dates of training.

The 2012 NFPA 70E code will require evidence of the content of your training done!
Article 110.4 (F) Hazard Identification

(F) Hazard Identification and Risk Assessment

Procedure:

• An electrical safety program shall include a hazard identification and a risk assessment procedure to be used before work is started within the limited approach boundary or within the arc flash boundary of energized electrical conductors and circuit parts operating at 50 volts or more or when an electrical hazard exists. The procedure shall identify the process to be used by the employee before work is started to identify hazards and assess risks, including potential risk mitigation strategies.
Article 130 Work Involving Electrical Hazards:

130.2 Electrically Safe Working Conditions

Energized electrical conductors and circuit parts to which an employee might be exposed shall be put into an *electrically safe work condition* before an employee performs work if either of the following conditions exist:

1. The employee is within the Limited Approach Boundary
2. The employee interacts with equipment where conductors or circuit parts are not exposed, but an increased risk of injury from an exposure to an arc flash hazard exists
Electrical Lock Out vs. Machine Specific Lock Out:

Correct Upstream LOTO Point for Electrical Disconnecting Means

Common Equipment Disconnect
Ensure the Correct E1 and E2 Source Locations are on your Sheets:

Only E1 is listed on the LOTO sheet.

On this example it is correct but commonly we see the equipment disconnect only listed!

<table>
<thead>
<tr>
<th>ID</th>
<th>Source</th>
<th>Location</th>
<th>Method</th>
<th>Check</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Electrical 480V</td>
<td>Disconnect located at the MCC located on North Wall</td>
<td>Move E-1 disconnect to off. Lock out.</td>
<td>Attempt restart at CP-1.</td>
<td>Lockout Hasp and Lock</td>
</tr>
<tr>
<td>W-1</td>
<td>Hot Water Supply</td>
<td>Disconnect Above the Boiler. Valve on West Side.</td>
<td>Turn W-1 valve off. Lock out.</td>
<td>Verify pressure has bled off.</td>
<td>Cable Lockout</td>
</tr>
<tr>
<td>W-2</td>
<td>Hot Water Return</td>
<td>Disconnect Above the Boiler. Valve on West Side.</td>
<td>Turn W-2 valve off. Lock out.</td>
<td>Verify pressure has bled off.</td>
<td>Cable Lockout</td>
</tr>
<tr>
<td>G-1</td>
<td>Gas Natural Gas</td>
<td>Disconnect on West side of Boiler unit.</td>
<td>Turn G-1 valve off. Lock out.</td>
<td>Verify pressure has bled off.</td>
<td>Universal Ball Valve Lockout</td>
</tr>
</tbody>
</table>

DANGER
Any machine modifications must be shown in procedure. Contact facilities to update procedure.
Labeling Goals for Arc Flash and Shock (LOTO) Programs

- Equipment Labeling should include three key components which are:
 1. Complete Arc flash hazard ratings and PPE
 2. Shock hazard ratings and glove needs
 3. A means for identifying “what” the equipment is called and more importantly “where” it is being fed from in order to obtain a de-energized state.
New 130.5 (C) Equipment Labeling Codes for 2012 Edition:

1. At least one of the following:
 - Available incident energy and the corresponding working distance
 - Minimum arc rating of clothing
 - Required level of PPE
 - Highest Hazard/Risk Category (HRC) for the equipment
New 130.5 (C)Equipment Labeling Codes for 2012 Edition: (Cont)

(2) Nominal system voltage

(3) Arc flash boundary

- Exception: Labels applied prior to September 30, 2011 are acceptable if they contain the available incident energy or required level of PPE. (This exception reads poorly)

- *The method of calculating and data to support the information for the label shall be documented.*
Overview of Informative PPE Label Format:

- Complete PPE listings
- Shows Glove Needs
- Supports Electrical
- LOTO Needs
- Date Optional for 70E
- Shows Fault Current Levels to Aid in Breaker Applications

ARC FLASH AND SHOCK HAZARD	142 "Flash Hazard Boundary
APPROPRIATE PPE REQUIRED	36 cal/cm² Flash Hazard at an
	18" Working Distance
Category 4	FR Shirt & Pant + FR Coverall, Double Layer
PPE Level	Switching Coat and Hood, Safety Glasses,
	Hearing Protection
480 VAC Shock Hazard when Cover is Open/Removed	
Limited Approach	
42 " Restricted Approach	Class 00 500Volt Gloves
12 " Prohibited Approach	Class 00 500Volt Gloves

Live Entry Requires Management Approval

| Device Name: PNL-DRY | Fed From: MDP-DRY-1 |

Fault Current: 11.62 kA Date: 2-21-11 Faith Technologies 800-274-2345
Obtaining a De-Energized State:

De-Energized Work Practices
(Supportive PPE Labeling/Process)

- This example shows a standard disconnect with ideal labeling in place which in turn supports the fundamental goal for any safety program.
- If an employee was asked this question, how would they be able to respond now?
- If you had to change a fuse in this disconnect, explain to me how you would do that?
De-Energized Pop Quiz:

- Employees must know where the correct upstream disconnecting source is located.
- Employee must know how to lock/tag out the source.
- Employees must show shock hazard tools and techniques are in place including insulated glove tests and on demand air tests.
- Employees would then proceed to the enclosure and at that time must know exactly what PPE is required for arc flash exposures before opening the door.
- Upon opening the door the employee would then test via point on point contact test to confirm absence of power.
Incomplete Labeling Example:

Color coding is not recommended nor required.

Labeling lacked PPE details.

No Mention of insulated glove needs in old labels.

Bus Names and Protective Device references may not be the ideal references to use for LOTO goals?
Incomplete Label

In a system, Protective Device Names will often not be true LOTO points.

WARNING

Arc Flash and Shock Hazard

Appropriate PPE Required

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 3</td>
<td>PPE - Category Appropriate</td>
</tr>
<tr>
<td>480 VAC</td>
<td>Shock Hazard when cover is removed</td>
</tr>
<tr>
<td>00</td>
<td>Glove Class</td>
</tr>
<tr>
<td>42 inch</td>
<td>Limited Approach (Fixed Circuit)</td>
</tr>
<tr>
<td>12 inch</td>
<td>Restricted Approach</td>
</tr>
<tr>
<td>1 inch</td>
<td>Prohibited Approach</td>
</tr>
</tbody>
</table>

Bus: WasteWtrUnit Prot: WT1A 7

Arc Flash analysis conducted by

02.07.2005
Common to See PPE Labels Applied at the Wrong Locations

These PPE labels belong on the equipment, not at the fused QMB section.
Case Example on Current Installation Methods:

Customer made a decision to separate the new service sections. The resulting arc flash outcome was a dangerous no live entry on the left incoming section and a HRC 1 on the right load center.
Protective Device Names may not be the LOTO reference you want employees to target for daily use. Spreadsheet data simply dumps to label makers.
Minimum AR PPE Content For Labels:

<table>
<thead>
<tr>
<th>Category</th>
<th>Required Protection FR Clothing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 0</td>
<td>Untreated Cotton Long Sleeve Shirt, Pants, Safety Glasses, Hearing Protection</td>
</tr>
<tr>
<td>Category 1</td>
<td>AR Shirt, AR Pants, Hard Hat, 4 cal/cm² Face Shield, Safety Glasses, Hearing Protection</td>
</tr>
<tr>
<td>Category 2</td>
<td>AR Shirt, AR Pants, Hard Hat, Balaclava/Hood, 8 cal/cm² Face Shield, Safety Glasses, Hearing Protection</td>
</tr>
<tr>
<td>Category 3</td>
<td>AR Shirt & Pant + AR Coverall, Switching Hood, Safety Glasses, Hearing Protection</td>
</tr>
<tr>
<td>Category 4</td>
<td>AR Shirt & Pant + AR Coverall, Double Layer Switching Coat and Hood, Safety Glasses, Hearing Protection</td>
</tr>
</tbody>
</table>
Table 130.7(C)(16) Protective Clothing and Personal Protective Equipment (PPE)

<table>
<thead>
<tr>
<th>Hazard/Risk Category</th>
<th>Protective Clothing and PPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard/Risk Category 0</td>
<td>Protective Clothing, Nonmelting or Untreated Natural Fiber (i.e. untreated cotton, wool, rayon, or silk or blends of these materials) with a fabric weight of at least 4.5 oz/yd²</td>
</tr>
<tr>
<td></td>
<td>Protective Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task Based PPE Table 130.7C15

Review:

Table approach to PPE selection has additional engineering notations at the end of the table.

Also included the Parameters that must be considered in each section such as fault levels, clearing times etc.

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard Risk Category</th>
<th>Rubber Insulating Gloves</th>
<th>Insulated & Insulating Hand Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panelboards or Other Equipment Rated 240 V and Below</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum of 25 kA short circuit current available: maximum of 0.03 sec (2 cycle) fault clearing time; minimum 18 in. working distance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential arc flash boundary with exposed energized conductors or circuit parts using above parameters: 19 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform infrared thermography and other non-contact inspections outside the restricted approach boundary</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Circuit breaker (CB) or fused switch (FS) operation with covers on</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CB or fused switch operation with covers off</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Remove/install CBs or fused switches</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Removal of bolted covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Opening hinged covers (to expose bare, energized electrical conductors and circuit parts)</td>
<td>0</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts of utilization equipment fed directly by a branch circuit of the panelboard</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
What is OSHA and/or a Safety Directors Primary Goal with Electrical Safety?

To work on systems in a de-energized state!
Class Exercise on Work Permits:

- Your goal is to use the work permit sheet to discuss a project you have in mind.
- Break out into groups of two. One person will become the Safety Director and the other person will be the qualified employee.
- Together, fill out the work permit and we will share your examples as a group.
- Have some fun with this exercise!!!
Class Exercise on Work
Permits:
Caution Must Be Taken When Using PPE Table 130.7C15:

(5) For power systems up to 600V the Arc Flash Boundary was determined by using the following information:

When 0.03 second trip time was used, that indicated MCC or panelboard equipment protected by a molded-case circuit breaker. Working distance used is (455 mm) 18", arc gap used is 32mm for switchgear and 25 mm for MCC, protective device type 0 for all. When 0.33 or 0.5 second trip time was used, that indicated LVPCB (drawout circuit breaker) in switchgear. Working distance is (610 mm) 24", arc gap used is 32 mm, protective device type 0 for all. All numbers were rounded up or down depending on closest multiple of 5.
(130.7C15) New Direct Current Equipment

Table 130.7(C)(15)(b) Hazard/Risk Category Classifications and Use of Rubber Insulating Gloves and Insulated and Insulating Hand Tools-Direct Current Equipment

<table>
<thead>
<tr>
<th>Tasks Performed on Energized Equipment</th>
<th>Hazard/Risk Category</th>
<th>Rubber Insulating Gloved</th>
<th>Insulated and Insulating Hand Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Batteries, Direct-Current Switchboards and other DC supply sources > 100V <250V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage: 250 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum arc duration and working distance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 sec @ 18 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=1 kA and <4 kA</td>
<td>1</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Potential arc flash boundary using above parameters at 4 kA: 36 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=4 kA and <7 kA.</td>
<td>2</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Potential arc flash boundary using above parameters at 7 kA: 48 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work on energized electrical conductors and circuit parts, including voltage testing where arcing current is >=7 kA and <15 kA.</td>
<td>3</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Potential arc flash boundary using above parameters at 15 kA: 72 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On DC systems be sure to check your PPE clothing to make sure your ASTM ratings match this code!
130.5 Arc Flash Hazard Analysis

- **(2012) Edition**- An arc flash hazard analysis shall determine the arc flash boundary, the incident energy at the working distance, and the personal protective equipment people within the arc flash boundary shall use.

 - The arc flash hazard analysis shall be updated when a major modification or renovation takes place. It shall be reviewed periodically, not to exceed 5 years, to account for changes in the electrical distribution system that could affect the results of the arc flash hazard analysis.

 - Be careful to not confuse the intent of this article. If you make changes to your systems you shall update your safety process. Waiting five years between revisions is risky!!
130.5 Arc Flash Hazard Analysis

- **(2012) Edition** - Informational Note No. 5:
 - See IEEE1584 for more information regarding arc flash hazards for three-phase systems less than 240 volts.
 - This new definition follows similar goals the 2009 code edition had however three phase 240 systems must be calculated regardless of the upstream transformers.
Required Meter Safety Items

Double check your meter to ensure it is current

New
1000 V CAT III and 600 V CAT IV meters designed to withstand 8000 V transients
Use meters with these markings: 1000 V CAT III or 600 V CAT IV

Old
Fluke Meters designed to older standards do not show category rating on front of instrument
Do not use meters without proper CAT markings on 480 V circuits

Please make sure your meter leads are correct
Not Approved!

Look for this symbol to indicate approved tools:

(Hint: these tools don’t have it!)

Once the screw is set in the holder, you don’t have to touch it again. Both the handle and shanks are insulated against up to 1000 volts, only the chrome vanadium tips are exposed.

- Pieces: 5
- Design: flat and cross point
- Description: 5 x 150, 4 x 125, and 3 x 125mm flat-points, 6 x 175 No. 2, and 4 x 125 No. 1 cross points
- Shipping weight: 1 lb.
OSHA What’s New

➢ New PPE directive
➢ What is PPE?
 ❖ Personal Protective Equipment

➢ LINK
ABSTRACT

Purpose: This instruction, *Enforcement Guidance for Personal Protective Equipment in General Industry*, establishes OSHA’s general enforcement and guidance policy for its standards addressing personal protective equipment (PPE). It instructs OSHA enforcement personnel on both the agency’s interpretations of those standards and the procedures for enforcing them.

Scope: This instruction applies OSHA-wide.

References: See paragraph III.

Are Tools PPE?

- NOTE: Insulated protected tools and testing equipment are not considered to be personal protective equipment when working in proximity to exposed electrical parts. These tools are designed to make contact with exposed energized conductors or circuit parts.
Question

- When an employer decides to use flame-resistant clothing (FRC) to protect employees from any type of fire exposure hazard (e.g., flash fire or arc flash) is the employer required to pay for the FRC?
The employer is required to provide, ensure use, and maintain protective clothing in a sanitary and reliable condition whenever it is necessary by reason of hazards, capable of causing injury in any part of the body, as addressed in 29 CFR 1910.132(a). Where employees are exposed to electrical hazards (e.g., substations or electrical panels that present the potential for arc flash) refer to Safeguards for personnel protection. - 29 CFR 1910.335 and 29 CFR 1910.132(a) for PPE. Where there are flash fire hazards in General Industry occupations e.g., in the oil and gas industry and in petroleum-chemical plants, the employer is required to pay for FRC as indicated in 29 CFR 1910.132(h)(1). …
Value of Good Prints:

- A good electrical print should show all connecting devices including engineering information, OEM information along with short circuit findings in order to consolidate all aspects of maintenance and safety LOTO needs.

- Engineering software program one-lines alone are not recommended for LOTO use and are often not end user friendly nor complete.
Detailed One-Lines Show Valuable End User Needed Information
It is important to realize that in a standard engineering study, the “data collection” in the field is simply taken using existing equipment naming and is re-entered in software programs back at the office.

These types of one-lines are not descriptive nor complete for LOTO use and your staff will not prefer to work with them.
OSHA 1910.303(b)(5)...

**Adds requirements for the coordination of over current protection for circuits and equipment.

This is a separate presentation in itself

02.07.2005
2012 Additions for Maintenance

205.3 General Maintenance Requirements:

Electrical equipment shall be maintained in accordance with manufacturers’ instructions or industry consensus standards to reduce the risk of failure and the subsequent exposure of employees to electrical hazards.
What Might OSHA Look For?:

- Will look for PPE labeling
- Will seek inspection of tools and PPE use
- Will seek supporting data on training efforts to show evidence of qualified staff
- May seek evidence of the process used for risk assessments
- Will review and quantify your use of energized work permits and job briefings
- **Bottom Line, How do you manage de-energized work methods**
1910.333(a)(1) De-energized parts.

“Live parts to which an employee may be exposed shall be de-energized before the employee works on or near them, unless the employer can demonstrate that de-energizing introduces additional or increased hazards or is infeasible due to equipment design or operational limitations.”